References
1. Antson, A. A., Smith, D. J., Roper, D. I., Lewis, S., Caves, L. S., Verma, C. S., Buckley, S. L., Lillford, P. J., & Hubbard, R. E. (2001). Understanding the mechanism of ice binding by type III antifreeze proteins. Journal of molecular biology, 305(4), 875–889. https://doi.org/10.1006/jmbi.2000.4336
2. Baskaran, A., Kaari, M., Venugopal, G., Manikkam, R., Joseph, J., & Bhaskar, P. V. (2021). Anti freeze proteins (Afp): Properties, sources and applications – A review. International Journal of Biological Macromolecules, 189, 292–305. https://doi.org/10.1016/j.ijbiomac.2021.08.105
3. Chapman, A. (2009) Lolium perenne [Image]. Wikimedia Commons. https://commons.wikimedia.org/wiki/File:Lolium_perenne.jpg
4. Cheng, J., Hanada, Y., Miura, A., Tsuda, S., & Kondo, H. (2016). Hydrophobic ice-binding sites confer hyperactivity of an antifreeze protein from a snow mold fungus. Biochemical Journal, 473(21), 4011–4026. https://doi.org/10.1042/BCJ20160543
5. Davies, P. L. (2014). Ice-binding proteins: a remarkable diversity of structures for stopping and starting ice growth. Trends in Biochemical Sciences (Amsterdam. Regular Ed.), 39(11), 548–555. https://doi.org/10.1016/j.tibs.2014.09.005
6. Dewey, J. E. (2001) Choristoneura fumiferana larva [Image]. Wikimedia Commons. https://commons.wikimedia.org/wiki/File:Choristoneura_fumiferana_larva.jpg
7. Gharib, G., Saeidiharzand, S., Sadaghiani, A. K., & Koşar, A. (2021). Antifreeze Proteins: A Tale of Evolution From Origin to Energy Applications. Frontiers in Bioengineering and Biotechnology, 9, 770588–770588. https://doi.org/10.3389/fbioe.2021.770588
8. Keats, D. (2011) Ocean pout, Newfoundland, Canada [Image]. Wikimedia Commons. https://commons.wikimedia.org/wiki/File:Ocean_pout,_Newfoundland,_Canada.jpg
9. Kuiper, M.J., Davies, P. L., Gagné, S. M., Graether, S. P., Jia, Z., Sykes, B. D., & Walker, V. K. (2000). β-Helix structure and ice-binding properties of a hyperactive antifreeze protein from an insect. Nature (London), 406(6793), 325–328. https://doi.org/10.1038/35018610
10. Leinala, E. K., Davies, P. L., Doucet, D., Tyshenko, M. G., Walker, V. K., & Jia, Z. (2002). A beta-helical antifreeze protein isoform with increased activity. Structural and functional insights. The Journal of biological chemistry, 277(36), 33349–33352. https://doi.org/10.1074/jbc.M205575200
11. Matsumoto, N., Hoshino, T., Yamada, G., Kawakami, A., & Takada-Hoshino, Y. (2010). Sclerotia of Typhula ishikariensis biotype B (Typhulaceae) from archaeological sites (4000 to 400 BP) in Hokkaido, northern Japan. American Journal of Botany, 97(3), 433–437. https://doi.org/10.3732/ajb.0900133
12. Middleton, A. J., Marshall, C. B., Faucher, F., Bar-Dolev, M., Braslavsky, I., Campbell, R. L., Walker, V. K., & Davies, P. L. (2012). Antifreeze protein from freeze-tolerant grass has a beta-roll fold with an irregularly structured ice-binding site. Journal of molecular biology, 416(5), 713–724. https://doi.org/10.1016/j.jmb.2012.01.032
13. Tas, Sampaio-Pinto, V., Wennekes, T., van Laake, L. W., & Voets, I. K. (2021). From the freezer to the clinic: Antifreeze proteins in the preservation of cells, tissues, and organs. EMBO Reports, 22(3), e52162–e52162. https://doi.org/10.15252/embr.202052162
14. Tyshenko, M.G., Doucet, D., & Walker, V. K. (2005). Analysis of antifreeze proteins within spruce budworm sister species. Insect Molecular Biology, 14(3), 319–326. https://doi.org/10.1111/j.1365-2583.2005.00562.x